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As a model for the precession-driven motion in the Earth’s core, the flow of
incompressible fluid inside a spheroidal shell with imposed rotation and precession
is investigated by direct numerical simulation. In one set of simulations, free-slip
boundary conditions are used in order to isolate inertial instabilities. These occur
as triad resonances involving pairs of inertial modes which have the form of
columnar vortices. The simulations reproduce the phenomenon of ‘resonant collapses’
in which the excited modes periodically grow and suddenly decay into turbulence.
The experiments of Malkus (1968) are simulated using a hyperviscosity. A hysteretic
transition towards developed turbulence observed in one of these experiments can be
interpreted as a feature of the basic laminar flow rather than the instability itself. A
similar transition can be excluded for Earth’s parameters.

1. Introduction
Precession has long been recognized as a possible driving mechanism for the

geodynamo (Bullard 1949); but the basic laminar precession-driven flow in an
ellipsoidal shell is nearly toroidal and thus inefficient in generating a magnetic field.
Only unstable precession-driven flow is possibly a dynamo. We therefore wonder
whether precession causes a laminar or unstable or even turbulent flow inside the
Earth’s core. A series of experiments (Malkus 1968; Vanyo et al. 1995; Vanyo & Dunn
2000) has demonstrated how laminar, weakly time-dependent, and highly turbulent
flows can all be generated by precession. The numerical study of the associated
instabilities has only started recently (Tilgner & Busse 2001; Lorenzani & Tilgner
2001). Hydrodynamic instabilities can be classified into two broad groups. They are
either ‘viscous’ and exist only for a viscosity different from zero, or they are ‘inertial’
and occur also in an ideal fluid. The instabilities studied thus far all exist in spherical
geometry. In a sphere, a simple solid-body rotation is a solution of the equation of
motion for an ideal fluid. A solid-body rotation is a stable flow so that the instabilities
simulated up to now are all due to modifications of the flow introduced by viscosity
and must be classified as viscous. In this paper, we will confirm numerically that
inertial instabilities are also possible in precession-driven flow if the container is
spheroidal.

Viscous instability can occur both in the bulk of the fluid and in the Ekman layers
(Lorenzani & Tilgner 2001). In the first case, the unstable mode consists of two sets
of columnar vortices, one of which is a Rossby wave. In the second case, small-
scale structures appear in the boundary layers which easily overstrain the numerical
resolution and available computer resources. Control parameters characteristic of the
experiments could not be reached because of the onset of the Ekman-layer instability.
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Analytical work, on the contrary, has been restricted to inertial instabilities
(Kerswell 1993). The response of an ideal fluid in a rotating and precessing ellipsoid
is described by a solution usually called the ‘Poincaré solution’ (Poincaré 1910) even
though it had been derived 15 years before by Sloudsky (Sloudsky 1895). The Poincaré
solution has spatially uniform vorticity. For non-zero ellipticity of the boundaries,
the fluid is strained and thereby inertially unstable. The same mechanism acts in
rotating bodies subject to tidal deformations and has been reproduced in laboratory
experiments (Malkus 1989, Eloy, Le Gal & Le Dizès 2000).

Most of our knowledge about precession-driven flow comes from laboratory
experiments with water-filled spheroidal cavities. Experiments by Vanyo et al. (1995)
and Vanyo & Dunn (2000) have been designed to come as close as possible to the
Earth’s parameters. Whereas the characterization of the velocity field was mostly
restricted to visualization in older experiments, Noir et al. (2001a) used acoustic
Doppler anemometry and detected internal shear layers which had been predicted
theoretically or numerically (Hollerbach & Kerswell 1995; Kerswell 1995; Rieutord &
Valdettaro 1997; Tilgner 1999a; Noir et al. 2001b). Here, we will focus on the work
by Malkus (1968) who performed experiments with cavities with ellipticities 0.04 and
0.1 at Ekman numbers around 2 × 10−6. In addition to visualization, Malkus used
a torque measurement to determine the amount of energy dissipated in the flow. A
sudden jump from somewhat time-dependent to very turbulent flow occurred in the
container of ellipticity 0.1 as the precession rate was increased. In the container of
smaller ellipticity, the flow became increasingly disordered in a continuous fashion.
Intriguingly, the abrupt transition was accompanied by a hysteresis effect: upon
decreasing the precession rate, the flow remained turbulent at precession rates at
which it was only weakly disordered when the precession rate was increased. At
low enough precession rates, of course, turbulence disappeared again. The observed
instabilities have initially been interpreted as instabilities of internal shear layers, but
they could also be inertial instabilities. In particular, the sudden jump to violent
turbulence has been thought to indicate an inertial instability (Kerswell 1993).

The present paper intends to study inertial instabilities numerically. In order to
isolate the inertial mechanism, we use free-slip boundary conditions which eliminate
the viscous instabilities observed in Lorenzani & Tilgner (2001). Section 2 describes
the method employed and § 3 presents the results. In order to get as close as possible
to experiments, we reinstall no-slip boundary conditions in § 4, but use the concept
of hyperviscosity to suppress the Ekman-layer instability which would otherwise
make the simulation unresolvable. The choice of parameters is mostly guided by
the desire to interpret the experiments of Malkus (1968). These experiments are
more amenable to numerical analysis than later experiments. The results and their
implications are summarized in § 5.

2. Mathematical formulation and numerical model
Except for the boundary conditions or the hyperviscosity, the method used here

is the same as in Lorenzani & Tilgner (2001). The most important aspects of the
method are repeated here in order to make the paper self-contained and to introduce
the notation.

The most convenient reference frame for the numerical computation is the frame
attached to the rotating and precessing boundaries (the ‘mantle frame’). Within this
frame, two coordinate systems will be used: The original one in which the boundaries
are ellipsoids of revolution and the computational one in which the boundaries
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are spherical. The first system will be described with primed symbols. Consider
incompressible fluid of kinematic viscosity ν in a spheroidal shell rotating with
angular frequency ωD about the z-axis. The shell furthermore executes precessional

motion characterized by the precession vector ΩpΩ̂p (hats denote unit vectors). The
boundaries of the shell are given by:

x ′2

a2
+

y ′2

a2
+

z′2

c2
= 1, (1a)

x ′2

(ηa)2
+

y ′2

(ηa)2
+

z′2

(ηc)2
= 1, (1b)

η < 1 and both boundaries have the same ellipticity e = 1 − c/a. Units of length and
time are chosen as (1 − η)a and 1/ωD , respectively. Using the same primed symbols
as above to denote the dimensionless lengths, the equation of motion for the velocity
u′(r ′, t) reads in a frame of reference attached to the shell:

∂

∂t
∇′ × u′ + ∇′ × {(2( ẑ′ + Ω) + ∇′ × u′) × u′} = E∇′2∇′ × u′ + 2 ẑ′ × Ω, (2)

∇′ · u′ = 0. (3)

The Ekman number E is defined by E = ν(ωD(1 − η)2a2)−1 and Ω = Ωp/ωDΩ̂p . The
computational coordinate system is now introduced by the transformations:

x = x ′, y = y ′, z =
z′

1 − e
. (4)

If the velocities are transformed likewise,

ux = u′
x, uy = u′

y, uz =
u′

z

1 − e
, (5)

we obtain again a solenoidal vector field, ∇ · u = 0. The boundaries are now given by:

x2 + y2 + z2 = r2
o , (6a)

x2 + y2 + z2 = r2
i , (6b)

with ri/ro = η and ro − ri = 1. In this paper, we will either use no-slip boundaries in

connection with hyperviscosity, or free-slip boundaries. The precession axis Ω̂ forms
the angle α (0 < α < π/2) with the z-axis and is time-dependent in the chosen system
of reference:

Ω̂ = sin α cos t x̂ − sin α sin t ŷ + cos α ẑ. (7)

The equation of motion in the unprimed variables acquires additional terms but it
can now be discretized with a spectral method for spherical coordinates. The spatial
discretization uses spherical harmonics Ym

l for the angular variables and Chebychev
polynomials for the radius. ∇ · u =0 is satisfied by using a representation in terms
of poloidal and toroidal scalars. The time step is a second-order Adams–Bashforth
scheme for the nonlinear terms and the Coriolis force coupled to an implicit Euler step
for the diffusion term. Technical details of the algorithm are given in Lorenzani &
Tilgner (2003).

In this spectral method we solve for expansion coefficients which are indexed by
the order l and degree m of the spherical harmonics Y m

l . Every term in the equations
of motion is decomposed into spherical harmonics, including the viscous term. It is
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convenient to introduce a hyperviscosity into these equations. The hyperviscosity used
in spectral methods in spherical geometry is usually a viscosity or an Ekman number
which depends on l. If we used hyperviscosity, we replaced E in the equations of
motion for the spectral coefficients by El given by:

El =




E, l � 10,

E

[
1 +

0.1

E

(
l

L

)6
]

, l > 10,
(8)

where L is the highest order of the spherical harmonics retained in the spectral
representation of the unknowns. This particular choice will be motivated in § 4.

For the validation of the code, we start from the assumption that the no-slip version
has been adequately tested in Lorenzani & Tilgner (2001) and that we only need to
verify that the boundary conditions are correct. For that purpose we may as well use
a linear problem. Output from the new code has been compared with the independent
method used in Tilgner (1999b) and good agreement has been found.

3. Simulations with free-slip boundary conditions
As has already been shown in Tilgner (1999b), the Poincaré solution with uniform

vorticity is a very good approximation to the equations of motion with free-slip
boundary conditions for any Ekman number that will be used in this paper.
These boundary conditions almost completely eliminate boundary layers, internal
shear layers and other deviations from a Poincaré solution which cause the viscous
instabilities identified in Lorenzani & Tilgner (2001). Only inertial mechanisms remain
to make precession-driven flow unstable in a container with free-slip boundaries.

A useful device to isolate an instability from the basic flow is the symmetry of the
velocity field with respect to reflections at the origin (Lorenzani & Tilgner 2001). We
split the flow field u in a symmetric (us) and an antisymmetric (ua) component as:

u = ua + us, us = (u(r) − u(−r))/2, ua = (u(r) + u(−r))/2.

The basic flow resides entirely in us so that ua �= 0 is a sure indication of an instability.
However, an instability does not need to start in ua but can be excited in us as well.

The structure of the excited flow is usually easiest to grasp in a frame of reference
denoted with primed coordinates whose z′-axis points along the rotation axis of
the fluid (instead of along the symmetry axis of the container). If an approximate
validity of the Proudman–Taylor theorem leads to nearly two-dimensional structures,
it will be most easily recognized as columns aligned with the z′-axis. The azimuthal
wavenumber with respect to the z′-axis will be denoted by m′.

Kerswell (1993) presents a theory of inertial instability which assumes that the strain
rates in the Poincaré flow are small (which is realized for small ellipticities and small
precession rates). Two sources of instability are identified. The first is introduced by
the elliptical shape of the streamlines in the Poincaré solution. The second is because
the elliptical streamlines of the Poincaré flow lie in parallel planes and there is shear
perpendicular to these planes because the line joining the centres of the ellipses is
not perpendicular to the plane of the streamlines. The instability occurs through a
triad resonance between the Poincaré flow itself and two inertial modes. The elliptical
deformation couples two inertial modes whose azimuthal wavenumber differs by 2
(‘elliptical instability’) whereas the second mechanism (‘shear instability’) couples two
inertial modes whose wavenumbers differ by 1. The inertial modes of an ellipsoid are
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well known. It is thus possible to list all possible resonances involving eigenmodes
up to a certain modal degree (Lorenzani 2001). Eigenmodes of higher modal degree
are less interesting because they have a higher viscous damping rate and are more
difficult to excite in a real fluid. The theory can also make a prediction on the growth
rate of a resonant triad in an inviscid fluid which involves a cumbersome integral
which depends on the participating eigenmodes. There is, however, a convenient
upper bound for the growth rate which depends directly on geometric properties of
the Poincaré flow, e.g. its ‘elliptical’ and ‘shear’ strains.

Specific initial conditions have to be chosen for any numerical simulation. This
choice is ambiguous for stress free boundaries because all instabilities must eventually
die out with free-slip boundary conditions. To see this, we switch momentarily to
a ‘precession frame’ of reference chosen such that the precession and rotation axes
are stationary, i.e. that this frame is rotating about the precession axis when viewed
from inertial space. In the ‘precession frame’, the boundaries merely rotate about the
axis of symmetry of the container and therefore do not perform any work on the
fluid because the tangential stress at the boundaries vanishes. There is no Poincaré
force in this frame and the Coriolis force by definition does not perform any work.
We conclude that there is no energy input into the flow. On the other hand, there
is dissipation in every container other than a sphere. Poincaré solutions are linear
in the Cartesian coordinates and therefore do not dissipate, but they satisfy free-slip
boundary conditions only in a sphere or in a spheroid when the rotation axis of the
fluid is parallel to the symmetry axis. The general solution in a spheroid must deviate
from a Poincaré solution and must dissipate. Dissipation of course also occurs if the
flow becomes unstable. Since there is an energy sink and no energy source, the fluid
must eventually come to rest in the ‘precession frame’. In the ‘mantle frame’, this final
state corresponds to the motion u′ = − ẑ′ × r which is a solution of (2) for stress-free
boundary conditions. However, this solution is stable and of no interest in the present
context.

The computations described in this section start from initial conditions which are
stationary states on the time scale on which instabilities develop and evolve. The time
required to reach the final motion u′ = − ẑ′ × r is longer for smaller E, whereas inertial
instabilities arise also in the limit E → 0 with a finite growth rate. The initial states
used in the following are considered stationary because the rotation axis of the fluid
makes oscillations with an opening angle of at most 2◦ around a mean orientation,
and the mean orientation drifts by a couple of degrees from the beginning to the end
of a run.

The ambiguity concerning the initial state also sets the scope of these simulations:
they are intended to expose generic features of inertial instabilities in flows which
are virtually identical to a Poincaré flow, but they cannot relate directly to a specific
experiment. A closer connection with experiments is provided by the simulations with
hyperviscosity presented in the next section.

We first present a numerical run with the parameters α = 90◦, e = 0.15, η = 0.1,
Ω = −0.1 and E = 10−4. The values of α, e and Ω are chosen such that they fall into
an instability tongue predicted in Kerswell (1993, figure 3). The variable η is chosen
for convenience and E is made reasonably small. The basic state used in Kerswell
(1993), equation (4.1), is used here as the initial condition for the time integration. The
perturbation theory, which is accurate only for an inviscid fluid at small precession
rates, predicts growth in modes with wavenumbers 1 and 2 with a growth rate of
2.7 × 10−2. In the simulations, we indeed see a growth in the predicted wavenumbers.
The instability occurs in the antisymmetric component of the flow field which is zero
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Figure 1. Time evolution of the energy Ea contained in the velocity components antisymmetric
with respect to reflection at the origin for α = 90◦, e = 0.15, E = 10−4 and Ω = −0.1. Ea is
zero for a laminar flow.

for the basic flow. The growth rate is 2 × 10−2. The discrepancy with the theoretical
value stated above comes from a finite Ekman number and a precession rate which is
not infinitesimal but equal to −0.1. The approximate agreement of the growth rates
and the fact that we observe the modes with the expected wavenumber show that we
are indeed simulating an inertial instability.

The growing instability does not reach a saturated state but starts to oscillate
instead (figure 1). During the growth phases, the instability grows at a rate which is
approximately a factor of 2.5 smaller than the linear growth rate of 2×10−2 observed
at the beginning of the run when the unstable modes still have very small amplitude.
This behaviour is reminiscent of the ‘resonant collapse’ observed experimentally by
Malkus (1989), Manasseh (1992) and Eloy et al. (2000). During resonant collapse,
a laminar large-scale inertial mode suddenly decays into small-scale turbulence. The
small scales draw energy from the large scales which they dissipate. Once enough
energy has been dissipated, the flow becomes laminar and the same instability as
before grows once more, only to decay into turbulence again. This cycle repeats
indefinitely.

In order to demonstrate quantitatively the connection between our simulation and
the resonant collapse phenomenon, we separate the energy Ea contained in ua into
contributions by modes with m′ � 2, m′ > 2 and m′ > 6. We call the first part ‘large
scale’ because it contains the wavenumbers making up the Poincaré flow and the
initial inertial instability. The ‘small scales’ must be excited through nonlinearities or
further bifurcations. Figure 2 shows the temporal evolution of these energies. There
is a phase lag between the oscillations of the large and small scales: the energy in the
small scales is maximum when the energy loss of the large scale is fastest, exactly as
would be expected for a resonant collapse.
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Figure 2. Time evolution of the energy Ea contained in all antisymmetric velocity components
(circles), in modes with m′ > 2 (squares, these values have been multiplied by 8), and in modes
with m′ > 6 (triangles, these values have been multiplied by 24) for the same parameters as in
figure 1.

An oscillation as shown in figure 1 could also be merely a nonlinear oscillation
which does not involve a succession of instabilities as in a resonant collapse. Neither
direct simulations nor experiments can draw a strict distinction between both. A
resonant collapse is expected to populate higher wavenumbers more than a nonlinear
oscillation does, and it is a matter of plausibility whether an experimental or numerical
result is classified as one or the other. Another example of an oscillation in the course
of which small scales are excited will be presented in figures 5 and 6.

In a second computation, we choose the parameters α = 30◦, e =0.06, η =0.1,
Ω = −0.14 and E =5 × 10−5. Simulations have been started from two different initial
conditions, either the Poincaré solution used as basic state in Kerswell (1993), or a flow
derived from Busse (1968). All analytical work has been done in the ‘precession frame’
so that the initial conditions are first obtained in this frame and then transformed
into the ‘mantle frame’ by adding − ẑ × r to the velocity field. For a Poincaré solution
uP given in the ‘precession frame’, ωF = (1/2)∇ × uP is the rotation vector of the
fluid. For no-slip boundaries and in the limit of small Ekman and Rossby numbers,
Busse (1968) has derived for a spheroid with semi-axes a and c the expression

ωF

ω2
F

= ẑ +
A ẑ × (Ω × ẑ) + B( ẑ × Ω)

A2 + B2
, (9)

with A = 0.259(E/ωF )1/2(1 − η) + (1 − c/a)ω2
F + Ω ẑ and B = 2.62(EωF )1/2(1 − η),

E = ν(ωD(1 − η)2a2)−1. The z-axis points along the symmetry axis of the container.
We used (9) with E =10−15 to compute an ωF from which a uP was constructed
which then served as the initial condition.

The rotation vectors ωF of these two initial conditions differ by an angle of 7◦.
Both time integrations were run until the first instability started, which involved the
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uma x = 1.84 ×10 –3

∆ = 6.42 ×10 –5
uma x = 3.53 ×10 –3

∆ = 1.18 ×10 –4

Figure 3. usr (left) and usz′ (right) on cylindrical surfaces at distances 0.44 (left) and 0.34
(right) from the ωF -axis for e = 0.06, α = 30◦, Ω = −0.14 and E = 5 × 10−5. ϕ′ runs from
−π to π in going from left to right and θ ′ varies from −75◦ to 75◦ (left) and from −80◦ to 80◦

(right) in going from bottom to top. In this and subsequent figures, continuous and dashed
contour lines indicate positive and negative values, respectively. Each panel is labelled with the
maximum value umax occurring in the plot together with the spacing of the contour levels ∆.

e ma mb λa λb Symmetry p

0.048 4 5 −0.751 0.249 s 4.5 × 10−3

0.057 1 2 −0.022 0.978 a 1.0 × 10−3

0.065 1 3 −0.718 1.282 a
0.074 3 4 −0.395 0.605 s 1.5 × 10−2

Table 1. List of modes a and b which are exactly resonant in a container of ellipticity e
with wavenumbers m and eigenfrequencies λ. The next to last column indicates whether the
modes are symmetric (s) or antisymmetric (a) with respect to reflections at the origin. p is the
predicted growth rate of the shear instabilities (|ma − mb| = 1).

same two modes and the same growth rate for both initial conditions. The integration
started from the Poincaré solution has then been continued for a much longer time
and yielded figures 3–6.

We rely on numerical noise to trigger an instability. During the transient leading
to the final state, several different pairs of inertial waves become excited. Initially, the
pair m′ = 3 and 4 appears, followed by m′ = 1 and 2. Finally, the flow is dominated
by a pair with m′ = 1 and 3 which corresponds to two modes coupled by the elliptical
distortion of the streamlines (see table 1).

Following the theory of Kerswell (1993), it is possible to scan the inertial modes
for those pairs which are resonant for ellipticities near 0.06 (Lorenzani 2001). The
analytical counterparts of the pairs found in the numerics can be identified and are
given in table 1. The identification is based on the azimuthal wavenumber and the
symmetry of the modes with respect to reflection at the origin.
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uma x = 8.56 ×10 –7

∆ = 2.90 ×10 –8
uma x = 7.07 ×10 –7

∆ = 2.49 ×10 –8

(b)

uma x = 6.59 ×10 –7

∆ = 2.23 ×10 –8
uma x = 1.01 ×10 –6

∆ = 3.23 ×10 –8(a)

Figure 4. Flow for the same parameters as in figure 3 but 2300 units of time later. (a) uar

(left) and uaz′ (right) in the plane perpendicular to ωF . (b) uar (left) and uaz′ (right) at distances
0.84 (left) and 0.54 (right) from the ωF -axis. ϕ′ runs from −π to π in going from left to right
and θ ′ varies from −50◦ to 50◦ (left) and from −70◦ to 70◦ (right) in going from bottom to
top.

Table 1 also gives the growth rates computed from § 2 of Kerswell (1993). It is seen
that the pair m′ = 3 and 4, which dominates the instability in its linear regime, has
the largest growth rate. The predicted growth rate of 1.5 × 10−2 compares favourably
with the growth rate of 1.2×10−2 deduced from the numerical simulation, considering
that the theory is for an ideal fluid and infinitesimal shear.

Figures 3 and 4 give an impression of the structure of the flow at various stages of
the transient. These are representative of the entire temporal evolution. The graphical
representation is of the same sort as in Lorenzani & Tilgner (2001) and is based
on figure 10 of that paper: one set of rolls has a vanishing z′-component, the other
a vanishing r-component in the equatorial plane. We can therefore conveniently
separate both modes by plotting the radial and z′-components of the velocity field. It
is important to note that the flow always maintains a columnar structure with columns
aligned with the rotation axis of the fluid. It is therefore impossible to distinguish
by visual inspection the inertial instabilities described here from the viscous bulk
instabilities found in Lorenzani & Tilgner (2001). The sketch in figure 10 of that
paper applies to the viscous as well as to the inertial instability. Note that the
unstable modes can both be symmetric (figure 3).
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Figure 5. Time evolution of the energy Ea contained in the velocity components
antisymmetric with respect to reflection at the origin for the same parameters as in figure 3.

A pair m′ = 4 and 5 appears transiently in the antisymmetric component (figure 4),
whereas the only resonance in these wavenumbers at nearby ellipticities is predicted
in the symmetric component by the theory (table 1). The origin of this particular pair
has not been elucidated.

The flow does not reach a stationary state, but again goes through collapses. For the
parameters chosen, the variations of the energy are not periodic any more (figure 5).
Figure 6 demonstrates the appearance and disappearance of small-scale structures in
the course of the oscillations. The growth rate during the growth phases is roughly
9 × 10−3.

Laboratory experiments were mostly done with full ellipsoids, but for geophysical
applications, the effect of an inner core is of interest. We thus repeat the previous
simulation with the same parameters except that we set η = 0.35. We expect the inner
core to cause little change to the resonance conditions because the inertial modes
observed without inner core reach their largest amplitude outside the region now
occupied by the inner core. And indeed, the numerical simulation reveals an initial
instability with the same pair as before (m′ = 3 and 4) and the final stage is dominated
by the pair m′ = 1 and 3. However, the transients differ (a pair with m′ = 10 and 11
appears) and no collapses occur, but small scales remain permanently excited in a
statistically stationary state at the end of the run (figure 7).

As a summary of this section, we note that the initial phases of simulations
with free-slip boundary conditions agree well with theoretical predictions of inertial
instabilities of the Poincaré flow. We therefore conclude that the simulated instability
is indeed the inertial instability treated in Kerswell (1993). A signature of the elliptical
instability is the excitation of two inertial modes whose wavenumbers differ by 2. The
shear instability on the other hand cannot be easily distinguished from the viscous
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uma x = 3.35 ×10 –2

∆ = 1.14 ×10 –3
uma x = 1.66 ×10 –2

∆ = 7.60 ×10 –4
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∆ = 5.36 ×10 –2

Figure 6. Pictures of the flow at the times of the first maximum (top) and the first minimum
(bottom) in figure 5. The different panels show uar (left), uaz′ (middle) and (∇ × u)az′ (right).

uma x = 1.05 ×10 –1

∆ = 3.56 ×10 –3
uma x = 4.75

∆ = 1.61 ×10 –1
uma x = 1.06 ×10 –1

∆ = 2.68 ×10 –3

Figure 7. uar (left), uaz′ (middle) and (∇ × u)az′ (right) for e = 0.06, α = 30◦, Ω = − 0.14,
E = 5 × 10−5 and η = 0.35.

instabilities in Lorenzani & Tilgner (2001) since both consist of two sets of columnar
rolls whose wavenumbers differ by 1. Figure 10 of Lorenzani & Tilgner (2001) thus
summarizes both the inertial shear instability and the viscous bulk instability.

4. Simulations with hyperviscosity
We will now attempt to decide which type of instability acts in Malkus’ experiments

of 1968. In particular, we seek an interpretation for the hysteretic transition to strongly
turbulent flow observed in the container of ellipticity 0.1. For that purpose, we must
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reintroduce no-slip boundary conditions so that viscous instabilities have a chance
to occur, but at the same time, we have to prevent the small-scale instability of the
Ekman layer from spoiling any manageable resolution. We thus use the hyperviscosity
of equation (8), knowing that we introduce an error in the boundary layers and in
the small scales in the bulk should a collapse occur. The errors introduced by
hyperviscosity seem acceptable because the boundary-layer instability in Lorenzani &
Tilgner (2001) always remained confined to the boundary layer without affecting the
bulk. Even though the Reynolds number of the boundary layer surely exceeded its
critical value in some experiments, the Ekman-layer instability has never been noted
in experiments, which indicates that it stays localized in thin boundary layers also
at the parameters typical of experiments. We can therefore consider the dynamics
of the Ekman boundary layer to be of secondary importance and tolerate an error
there. At the same time, the radial coordinate and the modes making up the Poincaré
solution are unaffected by the hyperviscosity (8) so that the orientation of the basic
flow is virtually unchanged. The instabilities observed in the previous section involved
spherical harmonics of predominantly low order and with small wavenumbers. We
thus choose a hyperviscosity which leaves spherical harmonics of order less than
10 unaffected, so that instabilities are little suppressed if they involve modes of low
order. Since the excited modes are a superposition of many spherical harmonics, some
modification of the critical parameters at which instability sets in necessarily occurs,
but we expect to be able to reproduce both viscous and inertial instabilities in a single
model.

We start with a container with ellipticity e = 0.04 as in Malkus’ first experiment.
Instead of varying the precession rate at fixed Ekman number as in the experiment, it
is advisable in numerical simulations to vary the Ekman number at fixed precession
rate because it is then possible to carefully approach the parameter range in which
the required resolution overstretches the available computer resources. Note that a
hyperviscosity as in (8) does not eliminate thin boundary layers so that a high radial
resolution is still necessary at low Ekman numbers.

The parameters for figure 8 are α = 30◦, e =0.04, η = 0.1, and Ω = −0.035. In
this geometry and at this precession rate, the experiment at E = 2.5 × 10−6 revealed
turbulent motion. Decreasing the Ekman number in the simulations starting from
2 × 10−4, we encounter a first instability with m′ = 1 and 2. This must be a viscous
instability because a comparative run at E = 10−4 with free-slip boundary conditions
reveals no instability whatsoever. In addition, the behaviour of Ea as a function of
the Ekman number is qualitatively the same as in a sphere in which the inertial
instabilities cannot exist (see figure 8).

At E = 2 × 10−5, the behaviour of the flow in the ellipsoid changes drastically. The
energy of the unstable modes starts to oscillate in a manner typical of the resonant
collapse observed for the inertial instabilities in the previous section (figure 9). In the
maxima of figure 9, the spectrum of the flow is dominated by m′ = 3 and 4, whereas
during the minima, it is dominated by m′ = 1 and 2. The most natural interpretation
is that an inertial instability has set in on top of the viscous instability. The modes
excited by the inertial instability overwhelm the viscously excited ones, but after a
collapse, the weak viscously excited modes become visible again. The viscous and
inertial instabilities coexist according to this interpretation, the inertially unstable
modes having a larger amplitude most of the time.

As a consequence of hyperviscosity, the modes excited by the viscous instability
differ from those excited without hyperviscosity at the same parameters in
Lorenzani & Tilgner (2001), and the modes excited by the presumed inertial instability
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Figure 8. The antisymmetric energy Ea as a function of the Ekman number E for Ω =
−3.5 × 10−2, e =0.04, α = 30◦, η = 0.1 (circles) and Ω = − 0.1, e = 0, α = 40◦, η = 0.1 (squares).
The broken lines are guides to the eye through the data points. The continuous line connects
two points at E =2 × 10−5 which give the maximum and minimum values visited during the
oscillations shown in figure 9.
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Figure 9. Time evolution of Ea for (a) E = 4×10−5 and (b) E = 2×10−5. The other parameters
are the same as for the circles in figure 8, i.e. Ω = −3.5 × 10−2, e = 0.04, α = 30◦, and η = 0.1.

do not correspond to any identifiable triad resonance at nearby parameters. In order
to further support the classification of this instability, we could, in principle, track
its onset as a function of E. However, this undertaking is utopian considering the
available computer resources. With these caveats, it is nonetheless plausible to assume
that Malkus observed an inertial instability in his experiment.

Another experiment in Malkus (1968) used an ellipsoid with e =0.1 and showed a
remarkable jump in the dissipated energy as a function of precession rate together
with a hysteresis. In order to reproduce this behaviour, we have to drop our strategy
of varying E. Instead, we keep E fixed at E = 7×10−5 and vary Ω . The result is given
in table 2. A sudden jump in the antisymmetric energy by more than an order of
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Ω Ea θF (deg.) |ωF |

−0.055 2.37 × 10−4 33.95 0.877
−0.06 6.25 × 10−4 41.22 0.798
−0.065 1.45 × 10−2 81.49 0.292

Table 2. The energy in the antisymmetric modes Ea , the angle between container and fluid
axes θF , and the angular velocity of the fluid |ωF | as a function of the precession rate Ω for
e = 0.1, α = 90◦, and η = 0.1. The hyperviscosity (8) was used with E =7 × 10−5.
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Figure 10. The angle between the fluid and the container axes, (a) θF and (b) ωF = |ωF | as a
function of |Ω |. The continuous lines result from using equation (9) for E = 2 × 10−6, e = 0.1,
α = 96◦, and η = 0. The circles are numerical simulations, and the dashed line solutions of (9),
for E =7 × 10−5, e = 0.1, α = 90◦, and η = 0.1.

magnitude is observed when increasing |Ω | beyond Ω ≈ −0.06. After the transition,
the flow consists mainly of small-scale motion.

The variation in Ea and the hysteresis have nothing to do with the onset of a
new instability but are rather a manifestation of a reorientation of the vorticity of
the underlying Poincaré flow. Figure 10 shows the angle θF between the axes of the
container and the fluid. This angle abruptly increases at Ω ≈ −0.06. At the same time,
the flow in the bulk (which has nearly uniform vorticity below the transition) strongly
departs from a Poincaré flow (see figure 11). Accordingly, higher strain occurs above
than below the transition which explains the sudden increase of the antisymmetric
energy.

The mechanism behind the transition already appears in Busse’s (1968) theory
leading to (9). As pointed out in Noir (2000), this equation can have multiple solutions.
Figure 10 shows all possible solutions for Malkus’ experiment which showed the
hysteresis. Starting from Ω =0, we follow a branch (only one exists at low Ω) which
suddenly stops existing and forces the flow to switch to the upper branch. We find
the transition at Ω = −0.057, whereas Malkus indicates the range |Ω | =0.047−0.057.
The presence of two branches readily explains the hysteresis. The upper and lower
branches coexist for −0.047 > Ω > −0.057 according to the asymptotic theory, so
that the flow can stay on the upper branch if |Ω | is reduced from |Ω | > 0.057 to
|Ω | < 0.057 until the lower branch is recovered at Ω = −0.047. Malkus was able to
follow the upper branch down to Ω = −0.03. This discrepancy may be due to the fact
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Figure 11. (a) Latitude and longitude of the direction of the rotation vector ω(r) of the fluid
shell at radius r . ω(r) is given by ω(r) = (1 − e + 1/(1 − e))[−Re{W 1

1 (r)}x̂ + Im{W 1
1 (r)} ŷ] +

W 0
1 (r) ẑ + ẑ (see Lorenzani & Tilgner 2001). The three curves correspond to Ω = −0.055

(squares), −0.06 (diamonds) and −0.065 (circles). The other parameters are as in figure 10,
E = 7 × 10−5, e = 0.1, α = 90◦, and η =0.1. The symbols mark the direction of ω(r) at the radii
ri + (ro − ri)/41n, n= 1 · · · 41. The axis of (retrograde) precession points at zero longitude and
a latitude of 0◦. (b) ω, the absolute value of ω(r) as a function of r for the same parameters as
in (a) with the precession rates Ω = −0.055 (dashed), −0.06 (dot-dashed) and −0.065 (solid).

that the flow on the upper branch is highly turbulent and far away from a state with
constant vorticity, at variance with the assumptions of Busse (1968).

In the previous paragraph, we have used (9) far beyond its formal range of ap-
plicability. Past experience (Tilgner 1999a; Lorenzani & Tilgner 2001; Tilgner &
Busse 2001) has shown, however, that (9) yields satisfactory results even for large
tip-over angles and precession rates, so that it seems reasonable to compare Malkus’
experimental results with (9). However, there remains the possibility that multiple
solutions of (9) arise only because it is used for parameters which violate the
assumptions leading to (9).

5. Discussion
This paper has presented simulations of precession-driven flows under circum-

stances in which inertial instabilities occur. The classification as inertial instability is
unambiguous if free-slip boundary conditions are used, because the basic flow is then
lacking the interior shear layers and distortions which lead to other types of instability.
The inertial instabilities can again be separated into two classes: shear and elliptical
instabilities, which excite pairs of inertial modes whose azimuthal wavenumbers differ
by one and two, respectively. The shear instability is indistinguishable by mere visual
inspection from the viscous bulk instability found in Lorenzani & Tilgner (2001). Both
consist of two sets of rolls, one being a set of vortices antisymmetric with respect to the
equatorial plane, the other set being symmetric. When no-slip boundary conditions are
used, it is in practice impossible to classify an instability as inertial shear instability or
as viscous bulk instability with absolute certainty. The distinction between these types
of instability is, however, of interest because we have a theoretical understanding of
the inertial mechanism and can thus extrapolate its properties to Earth’s parameters.

During the growth phase, different pairs of modes may appear in the course of
time if various triads are close to resonance. At saturation, the flow may permanently
contain small scales and be as close to a turbulent flow as a well-resolved simulation
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can be, or the flow may go through collapses, i.e. that periodically an instability grows
until the flow becomes turbulent, after which it relaminarizes, so that the instability
can grow again and decay into turbulence once more. Collapses are commonly
observed in experiments with rotating deformed containers which are intended to be
models of tidally distorted bodies, but experiments with precessing ellipsoids only
revealed permanently turbulent flow. Our simulations show that collapses can also
occur in precessing ellipsoids of small ellipticity. The numerical data also reveal how
energy is transferred from large to small scales during a collapse (figure 2).

The vigorous motions observed in the experiments by Malkus (1968) are likely to
be inertial rather than viscous instabilities. This does not exclude the possibility of
a viscous instability appearing first at low precession rates. In one case, Malkus has
observed a spectacular transition from a chaotic to a fully turbulent flow accompanied
by a hysteresis effect. This transition is readily explained if we assume that Busse’s
asymptotic theory leading to (9) is still valid for the parameters of the experiment.
Indeed, the orientation of the basic flow may change abruptly as a function of the
precession rate. When this happens, the strain in the basic flow changes equally
abruptly and causes the transition from a more to a less stable flow. In addition,
several orientations of the flow may exist for a given precession rate which explains
the hysteresis phenomenon.

We finally apply the above results to the Earth. A catastrophic reorientation as
observed in Malkus’ experiment is not relevant to the Earth. For E = 10−15, α = 23.5◦

and e = 1/400 a similar transition occurs only at Ω ≈ −10−3, whereas the actual
precession rate of the Earth is Ω ≈ −10−7. For the Earth’s parameters, Kerswell’s
criterion should be appropriate because the basic flow he assumes is close to the one
predicted by (9). According to that criterion, the state of precession-driven flow in the
Earth’s core is uncertain because commonly accepted values of the viscosity of the
core put the flow close to its stability limit. Fluid viscosity is, however, one of the least
well-constrained material properties of the core. Let us assume that the core is
unstable. Precession then possibly drives the geodynamo or at least contributes to
the secular variation of a convectively driven dynamo. In the latter case, the collapse
phenomenon is of special interest. When collapse occurred in our simulations, the
growth rate after the collapse was within a factor of 2–3 from the growth rate, the
same modes have during a linear growth phase starting from a Poincaré solution as
described by perturbation theory. Using the upper bound for the growth rate of an
inertial instability given by Kerswell (1993) applied to Earth’s numbers gives a growth
rate of (20 000 year)−1. Viscosity also acts to slow this growth. If collapses play a role
in the Earth’s core, they could manifest themselves in variations of the magnetic field
with a time constant of 20 000 years or longer.

This work was supported by the ‘Deutsche Forschungsgemeinschaft’. Most of the
simulations presented here have been run on the CRAY T3E parallel machines of the
High Performance Computing Center Stuttgart.
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